Eigenvalues of Schrödinger operators perturbed by dissipative barriers

Alexei Stepanenko
PhD supervisors: Jonathan Ben-Artzi and Marco Marletta

Cardiff University

February 2, 2021
Introduction

Consider the Schrödinger operator

$$H_R := -\frac{d^2}{dx^2} + q + i\gamma \chi_{[0,R]} \quad \text{on} \quad L^2(\mathbb{R}_+) \quad (R > 0),$$

endowed with a Dirichlet boundary condition at 0, where:

1. $q \in L^1(\mathbb{R}_+)$ (background potential)
2. $\gamma > 0$.

- Multiplication operator $i\gamma \chi_{[0,R]}$ is referred to as a *dissipative barrier*.

Consider the Schrödinger operator

\[H_R := -\frac{d^2}{dx^2} + q + i\gamma\chi_{[0,R]} \quad \text{on} \quad L^2(\mathbb{R}_+) \quad (R > 0), \]

endowed with a Dirichlet boundary condition at 0, where:

1. \(q \in L^1(\mathbb{R}_+) \) (background potential)
2. \(\gamma > 0 \).

- Multiplication operator \(i\gamma\chi_{[0,R]} \) is referred to as a dissipative barrier.

- Dissipative barriers are useful in numerical analysis and arise in many settings.
Introduction

Consider the Schrödinger operator

\[H_R := -\frac{d^2}{dx^2} + q + i\gamma \chi_{[0,R]} \quad \text{on} \quad L^2(\mathbb{R}+) \quad (R > 0), \]

endowed with a Dirichlet boundary condition at 0, where:

1. \(q \in L^1(\mathbb{R}+) \) (background potential)
2. \(\gamma > 0. \)

- Multiplication operator \(i\gamma \chi_{[0,R]} \) is referred to as a *dissipative barrier*.

- Dissipative barriers are useful in numerical analysis and arise in many settings.

Question: How do the eigenvalues of \(H_R \) behave for large \(R \)?

Introduction

Consider the Schrödinger operator

\[H_R := -\frac{d^2}{dx^2} + q + i\gamma\chi_{[0,R]} \quad \text{on} \quad L^2(\mathbb{R}_+) \quad (R > 0), \]

endowed with a Dirichlet boundary condition at 0, where:

1. \(q \in L^1(\mathbb{R}_+) \) (background potential)
2. \(\gamma > 0. \)

- Multiplication operator \(i\gamma\chi_{[0,R]} \) is referred to as a *dissipative barrier*.

- Dissipative barriers are useful in numerical analysis and arise in many settings.

Question: How do the eigenvalues of \(H_R \) behave for large \(R \)?

Spectral inclusion

We have (as $R \to \infty$)

$$H_R = -\frac{d^2}{dx^2} + q + i\gamma \chi_{[0,R]} \xrightarrow{s} -\frac{d^2}{dx^2} + q + i\gamma =: H_\infty.$$
Spectral inclusion

We have (as $R \to \infty$)

$$H_R = -\frac{d^2}{dx^2} + q + i\gamma \chi_{[0,R]} \to -\frac{d^2}{dx^2} + q + i\gamma =: H_\infty.$$

Question: Is $\sigma(H_\infty)$ approximated by $\sigma(H_R)$?
Spectral inclusion

We have (as $R \to \infty$)

$$H_R = -\frac{d^2}{dx^2} + q + i\gamma \chi_{[0,R]} \xrightarrow{s} -\frac{d^2}{dx^2} + q + i\gamma =: H_\infty.$$

Question: Is $\sigma(H_\infty)$ approximated by $\sigma(H_R)$?

Theorem 1 ([1])

(a) For any eigenvalue λ of H_∞, there exists eigenvalues λ_R of H_R and constants $C_0, \beta, R_0 > 0$ such that

$$|\lambda_R - \lambda| \leq C_0 e^{-\beta R} \quad (R \geq R_0).$$
Spectral inclusion

We have (as $R \to \infty$)

$$H_R = -\frac{d^2}{dx^2} + q + i\gamma \chi_{[0,R]} \overset{s}{\to} -\frac{d^2}{dx^2} + q + i\gamma =: H_\infty.$$

Question: Is $\sigma(H_\infty)$ approximated by $\sigma(H_R)$?

Theorem 1 ([1])

(a) For any eigenvalue λ of H_∞, there exists eigenvalues λ_R of H_R and constants $C_0, \beta, R_0 > 0$ such that

$$|\lambda_R - \lambda| \leq C_0 e^{-\beta R} \quad (R \geq R_0).$$

(b) If $\exists \varepsilon > 0 : \int e^{\varepsilon t} |q(t)| \, dt < \infty$, then for (almost1) any $\mu \in \sigma_{\text{ess}}(H_\infty)$ there exists eigenvalues λ_R of H_R and constants $C_0, R_0 > 0$ such that

$$|\lambda_R - \mu| \leq \frac{C_0}{R} \quad (R \geq R_0).$$

1Any $\mu \in \sigma_{\text{ess}}(H_\infty)$ which is not an embedded resonance or the band-end.
Theorem 1 ([1])

(a) For any eigenvalue \(\lambda \) of \(H_\infty \), there exists eigenvalues \(\lambda_R \) of \(H_R \) and constants \(C_0, \beta, R_0 > 0 \) such that

\[
|\lambda_R - \lambda| \leq C_0 e^{-\beta R} \quad (R \geq R_0).
\]

(b) If \(\exists \varepsilon > 0 : \int e^{\varepsilon t} |q(t)| \, dt < \infty \), then for (almost) any \(\mu \in \sigma_{\text{ess}}(H_\infty) \) there exists eigenvalues \(\lambda_R \) of \(H_R \) and constants \(C_0, R_0 > 0 \) such that

\[
|\lambda_R - \mu| \leq \frac{C_0}{R} \quad (R \geq R_0).
\]

Example

\(R = 50, q = i\chi_{[0, 4.7]}, \gamma = 1 \)
Example

$R = 50, \ q = i\chi_{[0, 4.7]}, \ \gamma = 1$

Next steps:

- Enclosures for the eigenvalues of H_R
Example

\[R = 50, \ q = i\chi_{[0, 4.7]}, \ \gamma = 1 \]

Next steps:

- Enclosures for the eigenvalues of \(H_R \).
- Estimates for the number of eigenvalues \(N(H_R) \).
Enclosures

Theorem 2 ([2])

(a) \(\exists \) constant \(X = X(q, \gamma) > 0 \) such that \(\forall R > 0 \) the eigenvalues of \(H_R \) lie in

\[
\Gamma := B_X(0) \cup ([0, \infty) + i[0, \gamma])
\].
Enclosures

Theorem 2 ([2])

(a) \(\exists \) constant \(X = X(q, \gamma) > 0 \) such that \(\forall R > 0 \) the eigenvalues of \(H_R \) lie in

\[\Gamma := B_X(0) \cup ([0, \infty) + i[0, \gamma]). \]

(b) \(\exists \) constant \(R_0 = R_0(q, \gamma) > 0 \) such that any eigenvalue \(\lambda_R \) of \(H_R \) satisfies

\[\sqrt{|\lambda_R - i\gamma|} \leq \frac{5\gamma R}{\log R} \quad (R \geq R_0). \]
Enclosures

Theorem 2 ([2])

(a) \(\exists \) constant \(X = X(q, \gamma) > 0 \) such that \(\forall R > 0 \) the eigenvalues of \(H_R \) lie in

\(\Gamma := B_X(0) \cup ([0, \infty) + i[0, \gamma]). \)

(b) \(\exists \) constant \(R_0 = R_0(q, \gamma) > 0 \) such that any eigenvalue \(\lambda_R \) of \(H_R \) satisfies

\[\sqrt{|\lambda_R - i\gamma|} \leq \frac{5\gamma R}{\log R} \quad (R \geq R_0). \]

To compare to (b), application of a sharp enclosure of Frank, Laptev and Seiringer (2011) gives \(\sqrt{|\lambda_R|} = O(R). \)
Ideas in proof of Theorem 2.

1. **Use large-$|\lambda|$ Levinson asymptotics:** Solutions $\psi_{\pm}(\cdot, \lambda)$ to $-\psi'' + q\psi = \lambda \psi$ such that

$$\psi_{\pm}(x, \lambda) = e^{\pm i \sqrt{\lambda} x} (1 + E_{\pm}(x, \lambda))$$

where

$$|E_{\pm}(x, \lambda)| = O\left(\frac{1}{\sqrt{|\lambda|}}\right) \text{ as } |\lambda| \to \infty.$$
Ideas in proof of Theorem 2.

1. **Use large-|λ| Levinson asymptotics**: Solutions \(\psi_\pm(\cdot, \lambda) \) to

\[-\psi'' + q\psi = \lambda\psi\]

such that

\[
\psi_\pm(x, \lambda) = e^{\pm i \sqrt{\lambda} x} (1 + E_\pm(x, \lambda))
\]

where

\[
|E_\pm(x, \lambda)| = O \left(\frac{1}{\sqrt{|\lambda|}} \right) \quad \text{as} \quad |\lambda| \to \infty.
\]

2. Construct analytic function \(f_R \) such that

\[
\lambda \text{ eigenvalue of } H_R \iff f_R(\lambda) = 0.
\]

\(f_R \) has form

\[
f_R(\lambda) = \psi_-(0, \lambda - i\gamma) \left(\sqrt{\lambda} - \sqrt{\lambda - i\gamma} + \mathcal{E}_1(R, \lambda) \right) e^{i \sqrt{\lambda - i\gamma} R}
\]

\[
- \psi_+(0, \lambda - i\gamma) \left(\sqrt{\lambda} + \sqrt{\lambda - i\gamma} + \mathcal{E}_2(R, \lambda) \right) e^{-i \sqrt{\lambda - i\gamma} R}
\]

where

\[
|\mathcal{E}_1(R, \lambda)| + |\mathcal{E}_2(R, \lambda)| \leq C(q, \gamma).
\]
Counting eigenvalues

Notation. $N(H_R) =$ Number of eigenvalues of H_R.
Counting eigenvalues

Notation. \(N(H_R) = \) Number of eigenvalues of \(H_R \).

Theorem 3 ([2])

(a) If \(q \) is compactly supported, then there exists constant \(R_0 = R_0(q, \gamma) > 0 \) such that

\[
N(H_R) \leq \frac{11 \gamma R^2}{\log 2 \log R} \quad (R \geq R_0).
\]
Counting eigenvalues

Notation. \(N(H_R) = \) Number of eigenvalues of \(H_R \).

Theorem 3 ([2])

(a) If \(q \) is compactly supported, then there exists constant \(R_0 = R_0(q, \gamma) > 0 \) such that

\[
N(H_R) \leq \frac{11}{\log 2 \log R} \gamma R^2 \quad (R \geq R_0).
\]

(b) If \(\exists a > 0 : \int e^{4at} |q(t)| \, dt < \infty \), then

\[
N(H_R) \leq C \frac{\sqrt{X} + a}{a^2} \frac{\gamma R^3}{(\log R)^2} \quad (R \geq R_0)
\]

where \(X = X(q, \gamma) > 0 \) appeared in Th. 2 (a) and \(C = 88788 \).
Counting eigenvalues

Notation. $N(H_R) = \text{Number of eigenvalues of } H_R$.

Theorem 3 ([2])

(a) If q is compactly supported, then there exists constant $R_0 = R_0(q, \gamma) > 0$ such that

$$N(H_R) \leq \frac{11}{\log 2} \frac{\gamma R^2}{\log R} \quad (R \geq R_0).$$

(b) If $\exists a > 0 : \int e^{4at}|q(t)| \, dt < \infty$, then

$$N(H_R) \leq C \frac{\sqrt{X} + a}{a^2} \frac{\gamma R^3}{(\log R)^2} \quad (R \geq R_0)$$

where $X = X(q, \gamma) > 0$ appeared in Th. 2 (a) and $C = 88788$.

▶ Comparing to application of results in the literature:

<table>
<thead>
<tr>
<th></th>
<th>Th. 3</th>
<th>Application of literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compactly supported</td>
<td>$N(H_R) = O\left(\frac{R^2}{\log R}\right)$</td>
<td>$N(H_R) = O(R^2)$ Korotyaev (2020)</td>
</tr>
</tbody>
</table>
Counting eigenvalues

Notation. $N(H_R) =$ Number of eigenvalues of H_R.

Theorem 3 ([2])

(a) If q is compactly supported, then there exists constant $R_0 = R_0(q, \gamma) > 0$ such that

$$N(H_R) \leq \frac{11}{\log 2 \log R} \gamma R^2 \quad (R \geq R_0).$$

(b) If $\exists a > 0 : \int e^{4at} |q(t)| \, dt < \infty$, then

$$N(H_R) \leq C \frac{\sqrt{X} + a}{a^2} \frac{\gamma R^3}{(\log R)^2} \quad (R \geq R_0)$$

where $X = X(q, \gamma) > 0$ appeared in Th. 2 (a) and $C = 88788$.

Comparing to application of results in the literature:

<table>
<thead>
<tr>
<th></th>
<th>Th. 3</th>
<th>Application of literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compactly supported</td>
<td>$N(H_R) = O\left(\frac{R^2}{\log R}\right)$</td>
<td>$N(H_R) = O(R^2)$ Korotyaev (2020)</td>
</tr>
<tr>
<td>Naimark</td>
<td>$N(H_R) = O\left(\frac{R^3}{(\log R)^2}\right)$</td>
<td>$N(H_R) = O(R^4)$ Frank, Laptev, Safronov (2016)</td>
</tr>
<tr>
<td>Th. 3</td>
<td>Application of literature</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Compactly supported</td>
<td>(N(H_R) = O\left(\frac{R^2}{\log R}\right))</td>
<td></td>
</tr>
<tr>
<td>Naimark</td>
<td>(N(H_R) = O\left(\frac{R^3}{(\log R)^2}\right))</td>
<td></td>
</tr>
</tbody>
</table>

Ideas in proof of Theorem 3.

1. Construct analytic function \(g_R \) on \(\mathbb{C}_+ \) such that

\[
g_R(z) = 0 \iff z^2 \text{ eigval of } H_R.
\]
| Compactly supported | $N(H_R) = O\left(\frac{R^2}{\log R}\right)$ | $N(H_R) = O(R^2)$
Korotyaev (2020) |
|---------------------|--|--|
| Naimark | $N(H_R) = O\left(\frac{R^3}{(\log R)^2}\right)$ | $N(H_R) = O(R^4)$
Frank, Laptev, Safronov (2016) |

Ideas in proof of Theorem 3.

1. Construct analytic function g_R on \mathbb{C}_+ such that

$$g_R(z) = 0 \iff z^2 \text{ eigval of } H_R.$$

2. If q compactly supported, g_R admits analytic continuation to \mathbb{C}.
<table>
<thead>
<tr>
<th></th>
<th>Th. 3</th>
<th>Application of literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compactly supported</td>
<td>$N(H_R) = O\left(\frac{R^2}{\log R}\right)$</td>
<td>$N(H_R) = O(R^2)$ Korotyaev (2020)</td>
</tr>
<tr>
<td>Naimark</td>
<td>$N(H_R) = O\left(\frac{R^3}{(\log R)^2}\right)$</td>
<td>$N(H_R) = O(R^4)$ Frank, Laptev, Safronov (2016)</td>
</tr>
</tbody>
</table>

Ideas in proof of Theorem 3.

1. Construct analytic function g_R on \mathbb{C}_+ such that

 $$g_R(z) = 0 \iff z^2 \text{ eigval of } H_R.$$

2. If q compactly supported, g_R admits analytic continuation to \mathbb{C}.

 ▶ Apply Jensen’s formula to bound $N(H_R)$ and prove Th. 3 (a).
Ideas in proof of Theorem 3. (cont.)

3. \(\exists a > 0 : \int e^{4at} |q(t)| \, dt < \infty \)
 \[\Rightarrow g_R \text{ admits analytic continuation to } \{ \Im z > -2a \} \]
Ideas in proof of Theorem 3. (cont.)

3. \(\exists a > 0 : \int e^{4at} |q(t)| \, dt < \infty \)
\[\Rightarrow g_R \text{ admits analytic continuation to } \{ \Re z > -2a \}. \]

▶ Enclosure Th. 2 \(\Rightarrow \Re \sqrt{\lambda_R} \leq \sqrt{X} \) for any eigval \(\lambda_R \) of \(H_R \)
(recall that \(X = X(q, \gamma) > 0 \)).
Ideas in proof of Theorem 3. (cont.)

3. \(\exists a > 0 : \int e^{4at} |q(t)| \, dt < \infty \) \\
\(\Rightarrow g_R \) admits analytic continuation to \(\{ \Im z > -2a \} \).

- Enclosure Th. 2 \(\Rightarrow \Im \sqrt{\lambda_R} \leq \sqrt{X} \) for any eigval \(\lambda_R \) of \(H_R \) \\
 (recall that \(X = X(q, \gamma) > 0 \)).

- Prove bound for number of zeros of an arbitrary analytic function on \(\{ \Im z > -2a \} \) in the region

\[
D_{r,X} := \left\{ z \in \mathbb{C}_+ : \Im z \leq \sqrt{X}, |z| \leq r \right\}.
\]
Ideas in proof of Theorem 3. (cont.)

3. \(\exists a > 0 : \int e^{4at} |q(t)| \, dt < \infty \)
\(\Rightarrow g_R \) admits analytic continuation to \(\{ \Re z > -2a \} \).

- Enclosure Th. 2 \(\Rightarrow \Re \sqrt{\lambda_R} \leq \sqrt{X} \) for any eigval \(\lambda_R \) of \(H_R \)
 (recall that \(X = X(q, \gamma) > 0 \)).

- Prove bound for number of zeros of an arbitrary analytic function on \(\{ \Re z > -2a \} \) in the region

\[D_{r,X} := \left\{ z \in \mathbb{C}_+ : \Re z \leq \sqrt{X}, |z| \leq r \right\}. \]

- Apply this bound to \(g_R \) with \(r = O(R/\log R) \).
Thanks for listening!

References

Appendix
Proposition

Suppose that f is an analytic function defined on an open neighbourhood of the closed semi-disc $D_r := \overline{B}_r(0) \cap \mathbb{C}_+$ for some $r > 0$. Let α and β be any numbers in the interval $(0, 1)$ satisfying

$$\beta \left(\frac{1 - \alpha}{\alpha + \beta} \right)^2 > \frac{Y}{\eta} \quad (1)$$

and let $N(\alpha r)$ denote the number of zeros in the region

$$D_{\alpha r, \eta, Y} := \{ z \in \mathbb{C} : \eta \leq \Im z \leq Y, |z| \leq \alpha r \} \quad (2)$$

where $Y, \eta > 0$ are given parameters satisfying $\eta < Y < r$. Then,

$$N(\alpha r) \leq \frac{2}{\log \Lambda(r)} \log \left(\frac{1}{\min\{\beta, 1 - \beta\}} \frac{\sup_{z \in \partial D_r} |f(z)|}{|f(i \beta r)|} \right) \quad (3)$$

where

$$\Lambda(r) := \frac{1 + \frac{4\beta \eta}{(\alpha + \beta)^2} \frac{1}{r}}{1 + \frac{4Y}{(1-\alpha)^2}\frac{1}{r}} \quad (4)$$

Remark

One can always guarantee that condition (1) for α and β is satisfied by choosing, for instance,

$$\alpha = \beta = \frac{1}{4} \frac{\eta}{2Y + \eta} \quad (5)$$